Background: Therapeutic alliance improves pain, disability, and quality of life outcomes. The purpose of this study was to investigate the effectiveness of a training protocol aimed at enhancing the therapeutic alliance in patients with chronic low back pain.
Methods: 19 physical therapists (DPT) and 16 student physical therapists (SPT) completed a therapeutic alliance training course with a quantitative questionnaire completed before and after the training along with a follow-up qualitative interview.
Proc Natl Acad Sci U S A
June 2021
The 26S proteasome is the macromolecular machine responsible for the bulk of protein degradation in eukaryotic cells. As it degrades a ubiquitinated protein, the proteasome transitions from a substrate-accepting conformation (s1) to a set of substrate-processing conformations (s3 like), each stabilized by different intramolecular contacts. Tools to study these conformational changes remain limited, and although several interactions have been proposed to be important for stabilizing the proteasome's various conformations, it has been difficult to test these directly under equilibrium conditions.
View Article and Find Full Text PDFPathological hyperphosphorylated tau is a key feature of Alzheimer's disease (AD) and Frontotemporal dementia (FTD). Using transgenic mice overexpressing human non-mutated tau (htau mice), we assessed the contribution of tau to peripheral and central neurodegeneration. Indices of peripheral small and large fiber neuropathy and learning and memory performances were assessed at 3 and 6 months of age.
View Article and Find Full Text PDFEpidemiological studies have pointed at diabetes as a risk factor for Alzheimer's disease (AD) and this has been supported by several studies in animal models of both type 1 and type 2 diabetes. However, side-by-side comparison of the two types of diabetes is limited. We investigated the role of insulin deficiency and insulin resistance in the development of memory impairments and the effect of Exendin-4 (Ex4) treatment in a mouse model of AD.
View Article and Find Full Text PDFThe ubiquitin-proteasome system (UPS) is responsible for the bulk of protein degradation in eukaryotic cells, but the factors that cause different substrates to be unfolded and degraded to different extents are still poorly understood. We previously showed that polyubiquitinated substrates were degraded with greater processivity (with a higher tendency to be unfolded and degraded than released) than ubiquitin-independent substrates. Thus, even though ubiquitin chains are removed before unfolding and degradation occur, they affect the unfolding of a protein domain.
View Article and Find Full Text PDF