Publications by authors named "M Crosatti"

During infection Mycobacterium tuberculosis (Mtb) forms physiologically distinct subpopulations that are recalcitrant to treatment and undetectable using standard diagnostics. These difficult to culture or differentially culturable (DC) Mtb are revealed in liquid media, their revival is often stimulated by resuscitation-promoting factors (Rpf) and prevented by Rpf inhibitors. Here, we investigated the role of nitric oxide (NO) in promoting the DC phenotype.

View Article and Find Full Text PDF

Antimicrobial resistant (AMR) bacteria are emerging and spreading globally, threatening our ability to treat common infectious diseases. The development of new classes of antibiotics able to kill or inhibit the growth of such AMR bacteria through novel mechanisms of action is therefore urgently needed. Here, a new family of indole-containing arene ruthenium organometallic compounds are screened against several bacterial species and drug resistant strains.

View Article and Find Full Text PDF

In total, ~25% of familial breast cancer (BC) is attributed to germline mutations of the BRCA1 and BRCA2 genes, while the rest of the cases are included in the BRCAX group. BC is also known to affect men, with a worldwide incidence of 1%. Epigenetic alterations, including DNA methylation, have been rarely studied in male breast cancer (MBC) on a genome-wide level.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) and microRNAs are involved in numerous physio-pathological conditions included cancer. To better understand the molecular mechanism of the oral antitumor multikinase inhibitor sorafenib, we profiled the expression of a panel of lncRNAs and miRNAs by qPCR array in a sorafenib-treated hepatocellular carcinoma (HCC) cell line. Among the most affected ncRNAs, we found that sorafenib mediated the dysregulation of the lncRNAs GAS5, HOTTIP and HOXA-AS2 and the miR-126-3p, in a panel of human cancer cell lines (HCC, renal and breast carcinomas).

View Article and Find Full Text PDF

Growth and division by most bacteria requires remodelling and cleavage of their cell wall. A byproduct of this process is the generation of free peptidoglycan (PG) fragments known as muropeptides, which are recycled in many model organisms. Bacteria and hosts can harness the unique nature of muropeptides as a signal for cell wall damage and infection, respectively.

View Article and Find Full Text PDF