Publications by authors named "M Cristina Nostro"

Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Human pluripotent stem cells (hPSCs) can potentially become insulin-producing β cells, which are important for diabetes treatment, but current differentiation methods are not very effective.
  • Researchers found that using selective tankyrase inhibitors like WIKI4 improves the differentiation of hPSCs into pancreatic progenitors, leading to better development of islet-like cells.
  • These advancements enhance our understanding of pancreatic cell development and offer a new approach for creating pancreatic cells for research and potential diabetes therapies.
View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis.

View Article and Find Full Text PDF

The aim of regenerative medicine is to restore specific functions to damaged cells or tissues. A crucial aspect of success lies in effectively reintegrating these cells or tissues within the recipient organism. This is particularly pertinent for diabetes, where islet function relies on the close connection of beta cells to the bloodstream for glucose sensing and insulin release.

View Article and Find Full Text PDF

Human pluripotent stem cell (hPSC)-derived pancreatic progenitors (PPs) can be differentiated into beta-like cells in vitro and in vivo and therefore have therapeutic potential for type 1 diabetes (T1D) treatment. However, the purity of PPs varies across different hPSC lines, differentiation protocols, and laboratories. The uncommitted cells may give rise to non-pancreatic endodermal, mesodermal, or ectodermal derivatives in vivo, hampering the safety of hPSC-derived PPs for clinical applications and their differentiation efficiency in research settings.

View Article and Find Full Text PDF