Publications by authors named "M Cristina Moscatelli"

Alzheimer's disease (AD), the most common neurodegenerative disorder world-wide, presents sex-specific differences in its manifestation and progression, necessitating personalized diagnostic approaches. Current procedures are often costly and invasive, lacking consideration of sex-based differences. This study introduces an explainable machine learning (ML) system to predict and differentiate the progression of AD based on sex, using non-invasive, easily collectible predictors such as neuropsychological test scores and sociodemographic data, enabling its application in every day clinical settings.

View Article and Find Full Text PDF

The use of fotemustine (FTM) has been authorized in certain countries for the treatment of recurrent high-grade gliomas (HGG) after Stupp therapy. However, to the best of our knowledge, no studies have assessed changes in magnetic resonance imaging (MRI) during treatment with FTM monotherapy. The aim of the present study was to assess the neuroradiological findings in a cohort of patients with recurrent HGG treated with FTM monotherapy.

View Article and Find Full Text PDF

Amide Proton Transfer-weighted (APTw) imaging is a molecular MRI technique used to quantify protein concentrations in gliomas, which have heterogeneous components with varying cellularity and metabolic activity. This study aimed to assess the correlation between the component-specific APT signal of the neoplasm and WHO grade, molecular profile and survival status. Sixty-one patients with adult-type diffuse gliomas were retrospectively analyzed.

View Article and Find Full Text PDF

Background: The L5-S1 interlaminar access described in 2006 by Ruetten et al. represented a paradigm shift and a new perspective on endoscopic spinal approaches. Since then, the spinal community has shown that both the traditional ipsilateral and novel contralateral interlaminar approaches to the L5-S1 foramen are good alternatives to transforaminal access.

View Article and Find Full Text PDF

Structural lattices with quasi-periodic patterns possess interesting dynamic features that can be exploited to control, localize and redirect propagating waves. In this work, we show that the properties of a large class of quasi-periodic locally resonant systems (approximated as periodic, with arbitrarily large period) can be performed by defining an equivalent discrete system. Several properties of wave propagation can be demonstrated with reference to this system.

View Article and Find Full Text PDF