Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo.
View Article and Find Full Text PDFThe placenta is a gatekeeper between the mother and fetus, adapting its structure and functions to support optimal fetal growth. Studies exploring adaptations of placentae that support the development of genetically small fetuses are lacking. Here, using a mouse model of impaired fetal growth, achieved by deleting insulin-like growth factor 2 (Igf2) in the epiblast, we assessed placental nutrient transfer and umbilical artery (UA) blood flow during late gestation.
View Article and Find Full Text PDFInvestigations of memory mechanisms have been, thus far, neuron centric, despite the brain comprising diverse cell types. Using rats and mice, we assessed the cell-type-specific contribution of hippocampal insulin-like growth factor 2 (IGF2), a polypeptide regulated by learning and required for long-term memory formation. The highest level of hippocampal IGF2 was detected in pericytes, the multi-functional mural cells of the microvessels that regulate blood flow, vessel formation, the blood-brain barrier, and immune cell entry into the central nervous system.
View Article and Find Full Text PDFMaternal-offspring interactions in mammals involve both cooperation and conflict. The fetus has evolved ways to manipulate maternal physiology to enhance placental nutrient transfer, but the mechanisms involved remain unclear. The imprinted Igf2 gene is highly expressed in murine placental endocrine cells.
View Article and Find Full Text PDFIn the mouse, feto-placental endothelial cells (FPEC) line the inner surface of the feto-placental blood vessels located within placental labyrinthine zone and play critical roles in placental development and function. Here, we present a detailed protocol for isolation and culture of primary mouse FPEC, as well as two complementary methods (immunohistochemistry staining and flow cytometry analysis) to assess their purity. These cells are suitable for downstream ex vivo studies to investigate their functional properties, both in normal and pathological contexts.
View Article and Find Full Text PDF