Substances of unknown or variable composition, complex reaction products, and biological materials (UVCBs) comprise approximately 40% of all registered substances submitted to the European Chemicals Agency. One of the main characteristics of UVCBs is that they have no unique representation. Industry scientists who are part of the scientific community have been working with academics and consultants to address the problem of a lack of a defined structural description.
View Article and Find Full Text PDFThe target lipid model (TLM) has been previously applied to predict the aquatic toxicity of hydrocarbons and other nonionic organic chemicals and for deriving the concentrations above which 95% of species should be protected (HC5 values). Several concerns have been identified with the TLM-derived HC5 when it is applied in a substance risk assessment context. These shortcomings were addressed by expanding the acute and chronic toxicity databases to include more diverse taxonomic groups and increase the number of species.
View Article and Find Full Text PDFBiodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons.
View Article and Find Full Text PDFDuring simulation-type biodegradation tests, volatile chemicals will continuously partition between water phase and headspace. This study addressed how (1) this partitioning affects test results and (2) can be accounted for by combining equilibrium partition and dynamic biodegradation models. An aqueous mixture of 9 (semi)volatile chemicals was first generated using passive dosing and then diluted with environmental surface water producing concentrations in the ng/L to μg/L range.
View Article and Find Full Text PDFBecause of the large number of possible aromatic hydrocarbon structures, predictive toxicity models are needed to support substance hazard and risk assessments. Calibration and evaluation of such models requires toxicity data with well-defined exposures. The present study has applied a passive dosing method to generate reliable chronic effects data for 8 polycyclic aromatic hydrocarbons (PAHs) on the green algae Pseudokirchneriella subcapitata and the crustacean Ceriodaphnia dubia.
View Article and Find Full Text PDF