Publications by authors named "M Colzani"

Aims: Cardiac involvement is common in patients hospitalized with COVID-19 and correlates with an adverse disease trajectory. While cardiac injury has been attributed to direct viral cytotoxicity, serum-induced cardiotoxicity secondary to serological hyperinflammation constitutes a potentially amenable mechanism that remains largely unexplored.

Methods And Results: To investigate serological drivers of cardiotoxicity in COVID-19 we have established a robust bioassay that assessed the effects of serum from COVID-19 confirmed patients on human embryonic stem cell (hESC)-derived cardiomyocytes.

View Article and Find Full Text PDF

Regenerative cardiac tissue is a promising field of study with translational potential as a therapeutic option for myocardial repair after injury, however, poor electrical and contractile function has limited translational utility. Emerging research suggests scaffolds that recapitulate the structure of the native myocardium improve physiological function. Engineered cardiac constructs with anisotropic extracellular architecture demonstrate improved tissue contractility, signaling synchronicity, and cellular organization when compared to constructs with reduced architectural order.

View Article and Find Full Text PDF

The cardioprotective effects of sodium glucose cotrasponter 2 (SGLT2) inhibitors seem to be independent from the effects on glycemic control, through little-known mechanisms. In this study, we investigate whether the cardioprotective effects of empagliflozin, a SGLT2 inhibitor, may be associated with myocardial sympathetic activity and inflammatory cell infiltration in an experimental model of angiotensin II-dependent hypertension. Angiotensin II (Ang II), Ang II plus Empagliflozin, physiological saline, or physiological saline plus empagliflozin were administered to Sprague Dawley rats for two weeks.

View Article and Find Full Text PDF

Ischemic heart failure is due to irreversible loss of cardiomyocytes. Preclinical studies showed that human pluripotent stem cell (hPSC)-derived cardiomyocytes could remuscularize infarcted hearts and improve cardiac function. However, these cardiomyocytes remained immature.

View Article and Find Full Text PDF

Aims: The apelin receptor, a G protein-coupled receptor, has emerged as a key regulator of cardiovascular development, physiology, and disease. However, there is a lack of suitable human in vitro models to investigate the apelinergic system in cardiovascular cell types. For the first time we have used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and a novel inducible knockdown system to examine the role of the apelin receptor in both cardiomyocyte development and to determine the consequences of loss of apelin receptor function as a model of disease.

View Article and Find Full Text PDF