Publications by authors named "M Clynes"

MicroRNAs (miRNAs) are small, noncoding RNAs of about 22 nucleotides in length and have proven to be useful targets for genetic modifications for desirable phenotypes in the biotech industry. The use of constitutively expressed "miRNA sponge" vectors in which multiple, tandem miRNA-binding sites containing transcripts are transcriptionally regulated by a constitutive promoter for downregulating the levels of endogenous microRNAs in Chinese hamster ovary (CHO) cells has shown to be more advantageous than using synthetic antisense oligonucleotides. The application of miRNA sponges in biotechnological processes, however, could be more effective, if the expression of miRNA sponges could be tuned.

View Article and Find Full Text PDF

We describe the preparation of two cell culture media formulations for the culture in suspension of Chinese hamster ovary (CHO) cell lines. The first medium, Cell growth SFM Medium, is a serum-free medium designed to maintain cell growth with high-viability profiles. The second corresponds to a protein-free version optimized to increase CHO recombinant protein production (Production PFM Medium).

View Article and Find Full Text PDF
Article Synopsis
  • * Using ribosome footprint profiling (Ribo-seq), researchers discovered new open reading frames (ORFs) and many short ORFs (sORFs) that may code for microproteins, which could impact the quality of antibody products.
  • * Analyzing eight commercial antibody products showed that microprotein impurities exist and their levels fluctuate depending on the growth phase and culture environment, highlighting the need for better resources to study translation regulation in CHO cells.
View Article and Find Full Text PDF

MicroRNAs (miRNAs) regulate approximately one-third of all human genes. The dysregulation of miRNAs has been implicated in the development of numerous human diseases, including cancers. In our investigation focusing on altering specific miRNA expression in human pancreatic cancer cells, we encountered an interesting finding.

View Article and Find Full Text PDF

Purpose: Paracrine activation of pro-fibrotic hedgehog (HH) signaling in pancreatic ductal adenocarcinoma (PDAC) results in stromal amplification that compromises tumor drug delivery, efficacy, and patient survival. Interdiction of HH-mediated tumor-stroma crosstalk with smoothened (SMO) inhibitors (SHHi) "primes" PDAC patient-derived xenograft (PDX) tumors for increased drug delivery by transiently increasing vascular patency/permeability, and thereby macromolecule delivery. However, patient tumor isolates vary in their responsiveness, and responders show co-induction of epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF