Imaging mass spectrometry (IMS) provides promising avenues to augment histopathological investigation with rich spatio-molecular information. We have previously developed a classification model to differentiate melanoma from nevi lesions based on IMS protein data, a task that is challenging solely by histopathologic evaluation. Most IMS-focused studies collect microscopy in tandem with IMS data, but this microscopy data is generally omitted in downstream data analysis.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) has accelerated our understanding of lipid metabolism and spatial distribution in tissues and cells. However, few MSI studies have approached lipid imaging quantitatively and those that have focused on a single lipid class. We overcome this limitation by using a multiclass internal standard (IS) mixture sprayed homogeneously over the tissue surface with concentrations that reflect those of endogenous lipids.
View Article and Find Full Text PDFBackground: The definitive diagnosis of melanocytic neoplasia using solely histopathologic evaluation can be challenging. Novel techniques that objectively confirm diagnoses are needed. This study details the development and validation of a melanoma prediction model from spatially resolved multivariate protein expression profiles generated by imaging mass spectrometry (IMS).
View Article and Find Full Text PDFComputational analysis is crucial to capitalize on the wealth of spatio-molecular information generated by mass spectrometry imaging (MSI) experiments. Currently, the spatial information available in MSI data is often under-utilized, due to the challenges of in-depth spatial pattern extraction. The advent of deep learning has greatly facilitated such complex spatial analysis.
View Article and Find Full Text PDFIn this work, uniform manifold approximation and projection (UMAP) is applied for nonlinear dimensionality reduction and visualization of mass spectrometry imaging (MSI) data. We evaluate the performance of the UMAP algorithm on MSI data sets acquired in mouse pancreas and human lymphoma samples and compare it to those of principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and the Barnes-Hut (BH) approximation of t-SNE. Furthermore, we compare different distance metrics in (BH) t-SNE and UMAP and propose the use of spatial autocorrelation as a means of comparing the resulting low-dimensional embeddings.
View Article and Find Full Text PDF