Publications by authors named "M Cinchetti"

Altermagnetic (AM) materials exhibit non-relativistic, momentum-dependent spin-split states, ushering in new opportunities for spin electronic devices. While the characteristics of spin-splitting are documented within the framework of the non-relativistic spin group symmetry, there is limited exploration of the inclusion of relativistic symmetry and its impact on the emergence of a novel spin-splitting in the band structure. This study delves into the intricate relativistic electronic structure of an AM material, α-MnTe.

View Article and Find Full Text PDF

Coherent THz optical lattice and hybridized phonon-magnon modes are triggered by femtosecond laser pulses in the antiferromagnetic van der Waals semiconductor FePS . The laser-driven lattice and spin dynamics are investigated in a bulk crystal as well as in a 380 nm-thick exfoliated flake as a function of the excitation photon energy, sample temperature and applied magnetic field. The pump-probe magneto-optical measurements reveal that the amplitude of a coherent phonon mode oscillating at 3.

View Article and Find Full Text PDF

Spin-resolved momentum microscopy and theoretical calculations are combined beyond the one-electron approximation to unveil the spin-dependent electronic structure of the interface formed between iron (Fe) and an ordered oxygen (O) atomic layer, and an adsorbate-induced enhancement of electronic correlations is found. It is demonstrated that this enhancement is responsible for a drastic narrowing of the Fe d-bands close to the Fermi energy (E ) and a reduction of the exchange splitting, which is not accounted for in the Stoner picture of ferromagnetism. In addition, correlation leads to a significant spin-dependent broadening of the electronic bands at higher binding energies and their merging with satellite features, which are manifestations of a pure many-electron behavior.

View Article and Find Full Text PDF

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F and P450nor co-factors, with their reduced Ni- and Fe-containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature.

View Article and Find Full Text PDF

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F and P450nor co-factors, with their reduced Ni - and Fe -containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature.

View Article and Find Full Text PDF