The increasing global prevalence of myopia presents a significant public health concern, and growing evidence has demonstrated that myopia is a major risk factor for the development of open-angle glaucoma. Therefore, timely detection and management of glaucoma in myopic patients are crucial; however, identifying the structural alterations of glaucoma in the optic nerve head (ONH) and retinal tissues of myopic eyes using standard diagnostic tools such as fundus photography, optical coherence tomography (OCT), and OCT angiography (OCTA) presents challenges. Additionally, myopia-related perimetric defects can be confounded with glaucoma-related defects.
View Article and Find Full Text PDFPurpose: To evaluate RETFound, a foundation artificial intelligence model, using a diverse clinical research dataset to assess its accuracy in detecting glaucoma using optic disc photographs. The model's accuracy for glaucoma detection was evaluated across race, age, glaucoma severity, and various training cycles (epochs) and dataset sample sizes.
Design: Evaluation of a diagnostic technology.
Haploidentical hematopoietic cell transplantation (haplo-HCT) is an increasingly used treatment for hematologic malignancies. Although post-transplant cyclophosphamide (PtCy) has improved graft vs. host disease (GvHD) prophylaxis in haplo-HCT, patients continue to experience life-threatening complications.
View Article and Find Full Text PDF