Background: Chloride (Cl) secretion by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) located in the apical membrane of respiratory epithelial cells plays a critical role in maintenance of the airway surface liquid and mucociliary clearance of pathogens. Previously, we and others have shown that the serum and glucocorticoid-inducible kinase-1 (SGK1) increases wild type CFTR (wt-CFTR) mediated Cl transport in Xenopus oocytes by increasing the amount of wt-CFTR protein in the plasma membrane. However, the effect of SGK1 on the membrane abundance of wt-CFTR in airway epithelial cells has not been examined, and the mechanism whereby SGK1 increases membrane wt-CFTR has also not been examined.
View Article and Find Full Text PDFWhile many neurons are known to contain multiple neurotransmitters, the specific roles played by each co-transmitter within a neuron are often poorly understood. Here, we investigated the roles of the co-transmitters of the pyloric suppressor (PS) neurons, which are located in the stomatogastric nervous system (STNS) of the lobster Homarus americanus. The PS neurons are known to contain histamine; using RT-PCR, we identified a second co-transmitter as the FMRFamide-like peptide crustacean myosuppressin (Crust-MS).
View Article and Find Full Text PDFThe neuropeptide Fs (NPFs) are an invertebrate subgroup of the FMRFamide-like peptides, and are proposed by some to be the homologs of vertebrate neuropeptide Y. Although there is some information about the identity, tissue distribution and function of NPFs in insects, essentially nothing is known about them in crustaceans. We have identified and characterized NPF-encoding transcripts from the penaeid shrimp Litopenaeus vannamei and Melicertus marginatus.
View Article and Find Full Text PDFIn insects, a family of peptides with sequence homology to the vertebrate calcitonins has been implicated in the control of diuresis, a process that includes mixing of the hemolymph. Here, we show that a member of the insect calcitonin-like diuretic hormone (CLDH) family is present in the American lobster, Homarus americanus, serving, at least in part, as a powerful modulator of cardiac output. Specifically, during an ongoing EST project, a transcript encoding a putative H.
View Article and Find Full Text PDFBackground: Serum- and glucocorticoid-inducible kinase-1 (SGK1) increases CFTR Cl currents in Xenopus oocytes by an unknown mechanism. Because SGK increases the plasma membrane expression of other ion channels, the goal of this paper was to test the hypothesis that SGK1 stimulates CFTR Cl currents by increasing the number of CFTR Cl channels in the plasma membrane.
Methods: CFTR Cl currents were measured in Xenopus oocytes by the two-electrode voltage clamp technique, and CFTR in the plasma membrane was determined by laser scanning confocal microscopy.