Publications by authors named "M Chollet"

A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.

View Article and Find Full Text PDF

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.

View Article and Find Full Text PDF

Purpose: Alpine skiing races are physically demanding events characterized by numerous repeated near-maximal activations of the lower limb muscles. Although this type of task is known to induce neuromuscular fatigue, electromyographic activity (EMG) adaptations after repeated maximal-intensity skiing have not been previously investigated.

Methods: Six skiers completed a 6-turns section with (FAT) and without performing 30 giant slalom (GS) turns (CONT).

View Article and Find Full Text PDF

Supercritical fluids exhibit distinct thermodynamic and transport properties, making them of particular interest for a wide range of scientific and engineering applications. These anomalous properties emerge from structural heterogeneities due to the formation of molecular clusters at conditions above the critical point. While the static behavior of these clusters and their effects on the thermodynamic response functions have been recognized, the relation between the ultrafast cluster dynamics and transport properties remains elusive.

View Article and Find Full Text PDF

Many rubidium manganese hexacyanoferrate materials, with the general formula Rb Mn[Fe(CN)]·HO, exhibit diverse charge-transfer-based functionalities due to the bistability between a high temperature Mn( = 5/2)Fe( = 1/2) cubic phase and a low-temperature Mn( = 2)Fe( = 0) tetragonal phase. The collective Jahn-Teller distortion on the Mn sites is responsible for the cubic-to-tetragonal ferroelastic phase transition, which is associated with the appearance of ferroelastic domains. In this study, we use X-ray diffraction to reveal the coexistence of 3 types of ferroelastic tetragonal domains and estimate the spatial extension of the strain around the domain walls, which represents about 30% of the volume of the crystal.

View Article and Find Full Text PDF