Publications by authors named "M Chlipala"

Unlike non-polar semiconductors such as silicon, the broken inversion symmetry of the wide-bandgap semiconductor gallium nitride (GaN) leads to a large electronic polarization along a unique crystal axis. This makes the two surfaces of the semiconductor wafer perpendicular to the polar axis substantially different in their physical and chemical properties. In the past three decades, the cation (gallium) face of GaN has been used for photonic devices such as light-emitting diodes (LEDs) and lasers.

View Article and Find Full Text PDF

In recent years, the development of holographic near-eye displays (HNED) has surpassed the progress of digital hologram recording systems, especially in terms of wide-angle viewing capabilities. Thus, there is capture-display parameters incompatibility, which makes it impossible to reconstruct recorded objects in wide-angle display. This paper presents a complete imaging chain extending the available content for wide-angle HNED of pupil and non-pupil configuration with narrow-angle digital holograms of real objects.

View Article and Find Full Text PDF

III-nitrides possess several unique qualities, which allow them to make the world brighter, but their uniqueness is not always beneficial. The uniaxial nature of the wurtzite crystal leads to strikingly large electric polarization fields, which along with the high acceptor ionization energy cause low injection efficiency and uneven carrier distribution for multiple quantum well (QW) light emitting devices. In this work, we explore the carrier distribution in Ga-polar LED in two configurations: standard "p-up" and "p-down", which is accomplished by utilizing a bottom-tunnel junction.

View Article and Find Full Text PDF

Gallium nitride-based light-emitting diodes have revolutionized the lighting market by becoming the most energy-efficient light sources. However, the power grid, in example electricity delivery system, is built based on alternating current, which raises problems for directly driving light emitting diodes that require direct current to operate effectively. In this paper, we demonstrate a proof-of-concept device that addresses this fundamental issue - a gallium nitride-based bidirectional light-emitting diode.

View Article and Find Full Text PDF