Skin exhibits a complex structure consisting of three predominant layers (epidermis, dermis, and hypodermis). Extensive trauma may result in the loss of these structures and poor repair, in the longer term, forming scarred tissue and associated reduction in function. Although a number of skin replacements exist, there have been no solutions that recapitulate the chemical, mechanical, and biological roles that exist within native skin.
View Article and Find Full Text PDFChemical gardens are an example of a chemobrionic system that typically result in abiotic macro-, micro- and nano- material architectures, with formation driven by complex out-of-equilibrium reaction mechanisms. From a technological perspective, controlling chemobrionic processes may hold great promise for the creation of novel, compositionally diverse and ultimately, useful materials and devices. In this work, we engineer an innovative custom-built liquid exchange unit that enables us to control the formation of tubular chemical garden structures grown from the interface between calcium loaded hydrogel and phosphate solution.
View Article and Find Full Text PDF