Uncontrolled inflammation of the airways in chronic obstructive lung diseases leads to exacerbation, accelerated lung dysfunction and respiratory insufficiency. Among these diseases, asthma affects 358 million people worldwide. Human bronchial epithelium cells (HBEC) express both anti-inflammatory and activating molecules, and their deregulated expression contribute to immune cell recruitment and activation, especially platelets (PLT) particularly involved in lung tissue inflammation in asthma context.
View Article and Find Full Text PDFPlatelets are small anucleate cells derived from the fragmentation of megakaryocytes and are involved in different biological processes especially hemostasis, thrombosis, and immune response. Despite their lack of nucleus, platelets contain a reservoir of megakaryocyte-derived RNAs and all the machinery useful for mRNA translation. Interestingly, platelet transcriptome was analyzed in health and diseases and led to the identification of disease-specific molecular signatures.
View Article and Find Full Text PDFPlatelets are small anucleate cells known for their role in haemostasis and thrombosis. In recent years, an increasing number of observations have suggested that platelets are also immune cells and key modulators of immunity. They express different receptors and molecules that allow them to respond to pathogens, and to interact with other immune cells.
View Article and Find Full Text PDFThe nucleoprotein (NP) of influenza A virus (IAV) required for IAV replication is a promising target for new antivirals. We previously identified by in silico screening naproxen being a dual inhibitor of NP and cyclooxygenase COX2, thus combining antiviral and anti-inflammatory effects. However, the recently shown strong COX2 antiviral potential makes COX2 inhibition undesirable.
View Article and Find Full Text PDFThe Formyl Peptide Receptor 2 (FPR2) is a novel promising target for the treatment of influenza. During viral infection, FPR2 is activated by annexinA1, which is present in the envelope of influenza viruses; this activation promotes virus replication. Here, we investigated whether blockage of FPR2 would affect the genome trafficking of influenza virus.
View Article and Find Full Text PDF