Publications by authors named "M Chavez-Paez"

We investigate the structural relaxation of a soft-sphere liquid quenched isochorically (ϕ = 0.7) and instantaneously to different temperatures T above and below the glass transition. For this, we combine extensive Brownian dynamics simulations and theoretical calculations based on the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory.

View Article and Find Full Text PDF

The fundamental understanding of the dynamic and transport properties of liquids is crucial for the better processing of most materials. The usefulness of this understanding increases when it involves general scaling rules, such as the concept of the hard-sphere dynamic universality class, which provides a unifying scaling of the dynamics of soft-sphere repulsive systems. A relevant question is how far this concept extends to systems that also involve attractive interactions.

View Article and Find Full Text PDF

In this paper, we present a Monte Carlo simulation study on the structure of the electrical double layer around a spherical colloid surrounded by a binary electrolyte composed of spherical and non-spherical ions. Results are provided for the radial distribution functions between the colloid and ions, the orientation correlations between the colloid and non-spherical particles, and the integrated charge. Work is reported mainly for non-spherical particles modeled as spherocylinders, although a particular comparison is made between spherocylindrical particles and dimers.

View Article and Find Full Text PDF

Most theoretical and simulation studies on charged suspensions are at infinite dilution and are focused on the electrolyte structure around one or two isolated particles. Some classic experimental studies with latex particle solutions exhibit interesting phenomenology which imply very-long-range correlations. Here, we apply an integral equation theory to a model charged macroion suspension, at finite volume fraction, and find an amplitude-modulated charge inversion structure, with outsized amplitudes and of very-long-range extension.

View Article and Find Full Text PDF