Numerous ototoxic drugs, such as some antibiotics and chemotherapeutics, are both cochleotoxic and vestibulotoxic (causing hearing loss and vestibular disorders). However, the impact of some industrial cochleotoxic compounds on the vestibular receptor, if any, remains unknown. As in vivo studies are long and expensive, there is considerable need for predictive and cost-effective in vitro models to test ototoxicity.
View Article and Find Full Text PDFAlthough aging is associated with a higher risk of developing respiratory pathologies, very few studies have assessed the impact of age on the adverse effects of inhaled nanoparticles. Using conventional and transcriptomic approaches, this study aimed to compare in young (12-13-week-old) and elderly (19-month-old) fisher F344 rats the pulmonary toxicity of an inhaled nanostructured aerosol of titanium dioxide (TiO). Animals were nose-only exposed to this aerosol at a concentration of 10 mg/m for 6 h per day, 5 days per week for 4 weeks.
View Article and Find Full Text PDFEpidemiological and experimental studies indicate that a number of aromatic solvents widely used in the industry can affect hearing and balance following chronic exposure. Animal studies demonstrated that long-term exposure to aromatic solvents directly damages the auditory receptor within the inner ear: the cochlea. However, no information is available on their effect on the vestibular receptor, which shares many structural features with the cochlea and is also localized in inner ear.
View Article and Find Full Text PDFDespite well-documented neurotoxic and ototoxic properties, styrene remains commonly used in industry. Its effects on the cochlea have been extensively studied in animals, and epidemiological and animal evidence indicates an impact on balance. However, its influence on the peripheral vestibular receptor has yet to be investigated.
View Article and Find Full Text PDFBackground: Carbon disulfide (CS) exacerbates the effect of noise on hearing, and disrupts the vestibular system. The goal of this study was to determine whether these effects are also observed with intermittent CS exposure.
Methods: Rats were exposed for 4 weeks (5 days/week, 6 h/day) to a band noise at 106 dB SPL either alone or combined with continuous (63 ppm or 250 ppm) or intermittent (15 min/h or 2 × 15 min/h at 250 ppm) CS.