The opportunistic bacterial pathogen Pseudomonas aeruginosa causes a wide range of infections that are difficult to treat, largely because of the spread of antibiotic-resistant isolates. Antivirulence therapy, í.e.
View Article and Find Full Text PDFhas the genetic potential to acquire colistin resistance through the modification of lipopolysaccharide by the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) or phosphoethanolamine (PEtN), mediated by the operon or the gene, respectively. However, in vitro evolution experiments and genetic analysis of clinical isolates indicate that lipopolysaccharide modification with L-Ara4N is invariably preferred over PEtN addition as the colistin resistance mechanism in this bacterium. Since little is known about regulation in , we generated luminescent derivatives of the reference strain PAO1 to monitor and promoter activity.
View Article and Find Full Text PDFColistin represents a last-line treatment option for infections caused by multidrug resistant Gram-negative pathogens, including . Colistin resistance generally involves the modification of the lipid A moiety of lipopolysaccharide (LPS) with positively charged molecules, namely phosphoethanolamine (PEtN) or 4-amino-4-deoxy-L-arabinose (Ara4N), that reduce colistin affinity for its target. Several lines of evidence highlighted lipid A aminoarabinosylation as the primary colistin resistance mechanism in , while the contribution of phosphoethanolamination remains elusive.
View Article and Find Full Text PDFVancomycin-resistant Enterococcus faecium (VREfm) infections are increasing. Current anti-VREfm options (linezolid and daptomycin) are suboptimal. Fosfomycin maintains good efficacy against VREfm and chloramphenicol is active against ≥ 90% of VREfm.
View Article and Find Full Text PDFBackground: Most of our understanding on the social behavior and genomics of bees and other social insects is centered on the Western honey bee, Apis mellifera. The genus Apis, however, is a highly derived branch comprising less than a dozen species, four of which genomically characterized. In contrast, for the equally highly eusocial, yet taxonomically and biologically more diverse Meliponini, a full genome sequence was so far available for a single Melipona species only.
View Article and Find Full Text PDF