Publications by authors named "M Cellina"

Dynamic digital radiography (DDR) is a recent imaging technique that allows for real-time visualization of thoracic and pulmonary movement in synchronization with the breathing cycle, providing useful clinical information. A 46-year-old male, a former smoker, was evaluated for unexplained dyspnea and reduced exercise tolerance. His medical history included a SARS-CoV-2 infection in 2021.

View Article and Find Full Text PDF

Long COVID is a multi-systemic disease characterized by the persistence or occurrence of many symptoms that in many cases affect the pulmonary system. These, in turn, may deteriorate the patient's quality of life making it easier to develop severe complications. Being able to predict this syndrome is therefore important as this enables early treatment.

View Article and Find Full Text PDF

Although radiomics research has experienced rapid growth in recent years, with numerous studies dedicated to the automated extraction of diagnostic and prognostic information from various imaging modalities, such as CT, PET, and MRI, only a small fraction of these findings has successfully transitioned into clinical practice. This gap is primarily due to the significant methodological challenges involved in radiomics research, which emphasize the need for a rigorous evaluation of study quality. While many technical aspects may lie outside the expertise of most radiologists, having a foundational knowledge is essential for evaluating the quality of radiomics workflows and contributing, together with data scientists, to the development of models with a real-world clinical impact.

View Article and Find Full Text PDF

Our study aims to provide an overview of existing evidence regarding the image quality of dual-energy CT (DECT) employing reduced contrast media (CM) volumes, in comparison to single-energy CT (SECT) with standard CM loads. The advantages, indications, and possible applications of DECT were investigated from the perspective of providing better patient care, minimizing CM volume and managing CM shortage. : In this systematic review (PRISMA methodology), PubMed and WOS were searched from January 2010 to January 2023 by two independent reviewers.

View Article and Find Full Text PDF

Applications of large language models (LLMs) in the healthcare field have shown promising results in processing and summarizing multidisciplinary information. This study evaluated the ability of three publicly available LLMs (GPT-3.5, GPT-4, and Google Gemini-then called Bard) to answer 60 multiple-choice questions (29 sourced from public databases, 31 newly formulated by experienced breast radiologists) about different aspects of breast cancer care: treatment and prognosis, diagnostic and interventional techniques, imaging interpretation, and pathology.

View Article and Find Full Text PDF