An iterative alternate projection-based algorithm is developed to design structured surface reflectors to operate as beam splitters at GHz and THz frequencies. To validate the method, a surface profile is determined to achieve a reflector at 610 GHz that generates four equal-intensity beams towards desired directions of ±12.6° with respect to the specular reflection axis.
View Article and Find Full Text PDFIn this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized.
View Article and Find Full Text PDFThe focusing capabilities of an inward cylindrical traveling wave aperture distribution and the non-diffractive behaviour of its radiated field are analyzed. The wave dynamics of the infinite aperture radiated field is clearly unveiled by means of closed form expressions, based on incomplete Hankel functions, and their ray interpretation. The non-diffractive behaviour is also confirmed for finite apertures up to a defined limited range.
View Article and Find Full Text PDF