D-lactic acidosis is associated with fermentative disturbances and is often marked by elevated levels of D-lactic acid in the blood, ruminal fluid, and synovial fluid in cattle. D-lactic acidosis is linked to various inflammatory manifestations, and although the causative factors have been extensively explored, the exact pathogenesis of the associated inflammation remains elusive. Notably, less attention has been given to D-lactate, a stereoisomer found in the plasma of affected animals, which may lead to D-lactic acidosis.
View Article and Find Full Text PDFMurine syngeneic tumor models have been used extensively for cancer research for several decades and have been instrumental in driving the discovery and development of cancer immunotherapies. These tumor models are very simplistic cancer models, but recent reports have, however, indicated that the different inoculated cancer cell lines can lead to the formation of unique tumor microenvironments (TMEs). To gain more knowledge from studies based on syngeneic tumor models, it is essential to obtain an in-depth understanding of the cellular and molecular composition of the TME in the different models.
View Article and Find Full Text PDFDev Comp Immunol
August 2023
d-lactate is a metabolite originating from bacterial metabolism that accumulates as a result of dietary disturbances in cattle, leading to ruminal acidosis. d-lactate exerts functions as a metabolic signal inducing metabolic reprogramming and extracellular trap (ET) release in polymorphonuclear leucocytes (PMNs). We previously demonstrated that d-lactate induces metabolic reprogramming via hypoxia-induced factor 1 alpha (HIF-1α) stabilization in bovine fibroblast-like synoviocytes (FLSs).
View Article and Find Full Text PDFBackground: Loss of Ambra1 (autophagy and beclin 1 regulator 1), a multifunctional scaffold protein, promotes the formation of nevi and contributes to several phases of melanoma development. The suppressive functions of Ambra1 in melanoma are mediated by negative regulation of cell proliferation and invasion; however, evidence suggests that loss of Ambra1 may also affect the melanoma microenvironment. Here, we investigate the possible impact of Ambra1 on antitumor immunity and response to immunotherapy.
View Article and Find Full Text PDFLameness is a common condition in dairy cattle caused by infectious or noninfectious agents. Joint lesions are the second most common cause of lameness and can be diagnosed in association with the presentation of digit injuries. Fibroblast-like synoviocyte (FLS) are predominant cells of synovia and play a key role in the pathophysiology of joint diseases, thus increasing the expression of proinflammatory mediators.
View Article and Find Full Text PDF