Development of materials by mixing different base components is a widespread methodology to create materials with improved properties compared to those of its base components. However, efficient determination of the properties of mixture-based materials during design remains challenging without prior knowledge of the underlying physical phenomena. In this work a new data-based methodology is proposed involving the use of probabilistic, knowledge-guided artificial neural networks to jointly model the properties of the base components, the proportions in which they are mixed, and the processing conditions used during manufacture to predict properties of final products.
View Article and Find Full Text PDFElucidating organismal developmental processes requires a comprehensive understanding of cellular lineages in the spatial, temporal, and molecular domains. In this study, we introduce Zebrahub, a dynamic atlas of zebrafish embryonic development that integrates single-cell sequencing time course data with lineage reconstructions facilitated by light-sheet microscopy. This atlas offers high-resolution and in-depth molecular insights into zebrafish development, achieved through the sequencing of individual embryos across ten developmental stages, complemented by reconstructions of cellular trajectories.
View Article and Find Full Text PDFObjective: This systematic review aims to analyze and synthesize the current state of research on the role of immersive technologies, specifically augmented reality (AR), virtual reality (VR), and mixed reality (MR), in medical physics and radiation physics education. The primary focus is to evaluate their impact on learning outcomes, performance, and engagement across various educational contexts.
Methods: We conduct a comprehensive search of four major databases: Scopus, Web of Science, PubMed, and IEEE Xplore, covering the period from 2012 to 2023.
Single-cell sequencing has revolutionized our understanding of cellular heterogeneity and cell state, enabling investigations across diverse fields such as developmental biology, immunology, and cancer biology. However, obtaining a high-quality single-cell suspension is still challenging, particularly when starting with limited materials like Zebrafish embryos, a powerful animal model for studying developmental processes and human diseases. Here, we present an optimized protocol for isolating single cells from individual zebrafish embryos, offering a valuable resource for researchers interested in working with limited starting material.
View Article and Find Full Text PDFUnderstanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond Rattlesnake (Crotalus ruber) and used range-wide 'omic data to estimate the degree to which neutral and adaptive evolutionary processes shaped venom evolution.
View Article and Find Full Text PDF