New Phytol
September 2022
The clearing of land for agricultural production depletes soil organic carbon (OC) reservoirs, yet despite their importance, the mechanisms by which C is stabilized in soils remain unclear. Using synchrotron-based infrared microspectroscopy, we have for the first time obtained in situ, laterally resolved data regarding the speciation of C within sections taken from intact free microaggregates from two contrasting soils (Vertisol and Oxisol, 0-20 cm depth) impacted upon by long-term (up to 79 y) agricultural production. There was no apparent gradient in the C concentration from the aggregate surface to the interior for any of the three forms of C examined (aliphatic C, aromatic C, and polysaccharide C).
View Article and Find Full Text PDFUnderstanding the cycling of C and N in soils is important for maintaining soil fertility while also decreasing greenhouse gas emissions, but much remains unknown about how organic matter (OM) is stabilized in soils. We used nano-scale secondary ion mass spectrometry (NanoSIMS) to investigate the changes in C and N in a Vertisol and an Alfisol incubated for 365 days with C and N pulse labeled lucerne (Medicago sativa L.) to discriminate new inputs of OM from the existing soil OM.
View Article and Find Full Text PDFThe use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization.
View Article and Find Full Text PDFBiochar sequesters carbon (C) in soils because of its prolonged residence time, ranging from several years to millennia. In addition, biochar can promote indirect C-sequestration by increasing crop yield while, potentially, reducing C-mineralization. This laboratory study was set up to evaluate effects of biochar on C-mineralization with due attention to source appointment by using (13)C isotope signatures.
View Article and Find Full Text PDF