The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging.
View Article and Find Full Text PDFFollowing the publication of the joint The International Commissions on Radiation Units and Measurements (ICRU) and on Radiological Protection (ICRP) report on new operational quantities for radiation protection, the European Dosimetry Group (EURADOS) have carried out an initial evaluation. The EURADOS report analyses the impact that the new quantities will have on: radiation protection practice; calibration and reference fields; European and national regulation; international standards and, especially, dosemeter and instrument design. The task group included experienced scientists drawn from across the various EURADOS working groups.
View Article and Find Full Text PDFDosimetry in pulsed and mixed radiation fields represents an important challenge in radiation measurements, because in several accelerator technologies, the acceleration occurs in bunches of particles with short time duration, producing intense radiation pulses spaced by a relatively long time of beam off. The stray mixed radiation field generated around these installations maintains the same time structure as the primary beam and causes a problem in workplace fields' monitoring. Active neutron detectors normally used in steady neutron fields, specifically REM-counters and Bonner sphere spectrometers, can suffer pulsed fields because of the high dead time losses during the bursts and are often inadequate for pulsed field monitoring.
View Article and Find Full Text PDFCR-39 (PADC) nuclear track detectors are among the most widespread devices used for personal neutron dosimetry; however, some issues related to the variable material quality of the CR-39 polymer hinder the performance of CR-39-based dosemeters. For this reason, the Working Group 2 (WG2) of the European Radiation Dosimetry Group (EURADOS) has recently launched the CR-39 Quality task, a project aimed at improving and harmonising personal neutron dosimetry with CR-39 in Europe. Whitin this task, a close collaboration among researchers, individual monitoring services and dosemeter grade CR-39 manufacturers is achieved, thus facilitating the direct dialog between producer and consumer to reach an optimised material for personal neutron dosimetry applications.
View Article and Find Full Text PDFRadiat Prot Dosimetry
October 2023
The W-PIE is a cosmic neutron spectrometer used for environmental measurements, developed by Politecnico di Milano. The instrument is based on the Artkis M800 thermal neutron detector and works as a 4-channel spectrometer for detecting neutrons in the energy range of 0.01 eV-1 GeV.
View Article and Find Full Text PDF