Publications by authors named "M Canta"

Nowadays, most of the microfluidic devices for biological applications are fabricated with only few well-established materials. Among these, polydimethylsiloxane (PDMS) is the most used and known. However, it has many limitations, like the operator dependent and time-consuming manufacturing technique and the high molecule retention.

View Article and Find Full Text PDF

Background: We propose an efficient method to modify B-cell derived EVs by loading them with a nanotherapeutic stimuli-responsive cargo and equipping them with antibodies for efficient targeting of lymphoma cells.

Results: The post-isolation engineering of the EVs is accomplished by a freeze-thaw method to load therapeutically-active zinc oxide nanocrystals (ZnO NCs), obtaining the so-called TrojanNanoHorse (TNH) to recall the biomimetism and cytotoxic potential of this novel nanoconstruct. TNHs are further modified at their surface with anti-CD20 monoclonal antibodies (TNH) achieving specific targeting against lymphoid cancer cell line.

View Article and Find Full Text PDF

Nanomedicine is an emerging treatment approach for many cancers, characterized by having high sensitivity and selectivity for tumor cells and minimal toxic effects induced by the conventional chemotherapeutics. In these context, smart nanoparticles (NPs) are getting increasingly relevant in the development of new therapies. NPs with specific chemical composition and/or structure and being stimuli-responsive to magnetic, light or ultrasound waves are new promising tools.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are natural particles formed by the lipid bilayer and released from almost all cell types to the extracellular environment both under physiological conditions and in presence of a disease. EVs are involved in many biological processes including intercellular communication, acting as natural carriers in the transfer of various biomolecules such as DNA, various RNA types, proteins and different phospholipids. Thanks to their transfer and targeting abilities, they can be employed in drug and gene delivery and have been proposed for the treatment of different diseases, including cancer.

View Article and Find Full Text PDF

In the last 30 years the research about zinc oxide nanoparticles (ZnO NPs) and their related toxicity has shown a boom. ZnO NPs show cytotoxicity for both prokaryotic and eukaryotic cells and many studies demonstrated their selective toxicity towards cancer cells. However, with the increasing number of publications, it is observed an increase in the discrepancies obtained between the various results.

View Article and Find Full Text PDF