Publications by authors named "M Cambert"

Understanding lipid digestion is crucial for promoting human health. Traditional methods for studying lipolysis face challenges in sample representativeness and pre-treatment, and cannot measure real-time lipolysis in vivo. Thus, non-invasive techniques like magnetic resonance imaging (MRI) need to be developed.

View Article and Find Full Text PDF

The data provided here relate to the research paper "Assessing the complementarity of TD-NMR, solid-state NMR and Dynamic Vapor Sorption in the characterization of polysaccharide-water interactions". The original data from TD-NMR, ss-NMR and DVS is provided in .dps, topspin and .

View Article and Find Full Text PDF

Characterizing the hygroscopic behavior of macromolecular assemblies is crucial for understanding biological processes as well as to develop tailor-made polysaccharides-based products. In this work, assemblies consisting of nanocelluloses (CNC or CNF) and/or glucomannan in different ratio were studied at different water activity levels, using a multi-analytical approach that combined Dynamic Vapor Sorption (DVS), Time-Domain Nuclear Magnetic Resonance (TD-NMR) and solid-state NMR (ss-NMR). The water retention capacity of the films, as a function of their composition, showed that an enrichment in konjac glucomannan in association with cellulose increased the water absorption capacity but decreased the water retention capacity.

View Article and Find Full Text PDF

To provide evidence for previously proposed assumptions concerning starch gelatinization sub-mechanisms, a more detailed investigation was carried out using multiscale analysis of a starch type selected for its marked difference. Tapioca starch was chosen due to its cohesive/springy properties and its growing use in the food industry. Time-domain nuclear magnetic resonance (TD-NMR) was used to investigate the leaching of material, water absorption and crystallite melting in hydrated tapioca starch (45%).

View Article and Find Full Text PDF

A temperature control unit was implemented to vary the temperature of samples studied on a commercial Mobile Universal Surface Explorer nuclear magnetic resonance (MOUSE-NMR) apparatus. The device was miniaturized to fit the maximum MOUSE sampling depth (25 mm). It was constituted by a sample holder sandwiched between two heat exchangers placed below and above the sample.

View Article and Find Full Text PDF