Publications by authors named "M Calvitti"

Background: Releasing large numbers of Aedes albopictus males, carrying the artificially introduced Wolbachia 'wPip' strain, results in a decrease in the reproductive capacity of wild females due to a phenomenon known as cytoplasmic incompatibility (CI). This vector control strategy is referred to as the incompatible insect technique (IIT). However, its widespread implementation faces various challenges, including the complexity of removing fertile females from the males intended for release.

View Article and Find Full Text PDF

Lately, nickel oxide nanoparticles (NiO NPs) have been employed in different industrial and biomedical fields. Several studies have reported that NiO NPs may affect the development of reproductive organs inducing oxidative stress and, resulting in male infertility. We investigated the effects of NiO NPs on porcine pre-pubertal Sertoli cells (SCs) which undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposure at two subtoxic doses of NiO NPs of 1 μg/ml and 5 μg/ml.

View Article and Find Full Text PDF

Background: Incompatible insect technique (IIT) is a population suppression approach based on the release of males with manipulated Wolbachia infection inducing egg inviability in wild females. We here present results of multiple field releases of incompatible ARwP males carried out in 2019 in a 2.7-ha green area within urban Rome (Italy) to assess the effect on Aedes albopictus egg viability.

View Article and Find Full Text PDF

Introduction: Among substances released into the environment by anthropogenic activities, the heavy metal cadmium (Cd) is known to induce severe testicular injury causing male subfertility/infertility. Zinc (Zn) is another heavy metal that, unlike Cd, is physiologically present in the testis, being essential for spermatogenesis. We aimed to examine the possibility that 50 µM ZnCl could counteract the toxic effects induced by Cd in an model of porcine prepubertal Sertoli cells (SCs) exposed to both subtoxic (5 μM) and toxic (10 μM) concentrations of CdCl for 48 h.

View Article and Find Full Text PDF

Space exploration beyond the Low Earth Orbit requires the establishment of Bioregenerative Life Support Systems (BLSSs), which, through bioprocesses for primary resource recycling, ensure crew survival. However, the introduction of new organisms in confined space habitats must be carefully evaluated in advance to avoid unforeseen events that could compromise the mission. In this work, we have designed and built an experimental chamber, named Growing/Rearing Module (GRM), completely isolated and equipped with micro-environmental monitoring and control systems.

View Article and Find Full Text PDF