Objective: Deep learning methods have shown potential in automating the detection of interictal epileptiform discharges (IEDs) in electroencephalography (EEG). We compared IED detection using our previously trained deep neural network with a group of experts to assess its potential applicability.
Methods: First, we performed clinical validation on an internal data set.
Introduction: Freezing of gait (FOG) is one of the most debilitating motor symptoms experienced by patients with Parkinson's disease (PD). FOG detection is possible using acceleration data from wearable sensors, and a convolutional neural network (CNN) is often used to determine the presence of FOG epochs. We compared the performance of a standard CNN for the detection of FOG with two more complex networks, which are well suited for time series data, the MiniRocket and the InceptionTime.
View Article and Find Full Text PDFObjective: Interictal epileptiform discharges (IED) are hallmark biomarkers of epilepsy which are typically detected through visual analysis. Deep learning has shown potential in automating IED detection, which could reduce the burden of visual analysis in clinical practice. This is particularly relevant for ambulatory electroencephalograms (EEGs), as these entail longer review times.
View Article and Find Full Text PDFBackground And Objectives: Epileptiform activity and burst suppression are neurophysiology signatures reflective of severe brain injury after cardiac arrest. We aimed to delineate the evolution of coma neurophysiology feature ensembles associated with recovery from coma after cardiac arrest.
Methods: Adults in acute coma after cardiac arrest were included in a retrospective database involving 7 hospitals.
Continuous electroencephalographam (EEG) monitoring contributes to prediction of neurological outcome in comatose cardiac arrest survivors. While the phenomenology of EEG abnormalities in postanoxic encephalopathy is well known, the pathophysiology, especially the presumed role of selective synaptic failure, is less understood. To further this understanding, we estimate biophysical model parameters from the EEG power spectra from individual patients with a good or poor recovery from a postanoxic encephalopathy.
View Article and Find Full Text PDF