Publications by authors named "M C Rushford"

Basic foot care is a real need of people experiencing homelessness. To improve access to foot health for this group, three services structured to provide healthcare support for people experiencing homelessness collaborated in metropolitan Melbourne, Australia: an established nurse-led Homeless Persons Program (HPP), a specialty community health podiatry clinic servicing people experiencing homelessness, and a charity supporting disadvantaged communities providing free socks, foot first aid kits and second-hand footwear for distribution by nurses and podiatrists of participating services. This paper outlines the implementation and evaluation of this collaboration.

View Article and Find Full Text PDF
Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF

We have used photon pair correlations generated via spontaneous parametric downconversion (SPDC) to measure the fluorescence lifetime of the organic dye rhodamine 6 G, demonstrating that fluorescence lifetime measurements can be achieved using a continuous wave (CW) laser, without pulsed or modulated lasers. Our entangled photon method, quantum fluorescence lifetime (Q-FL) measurements, uses one photon to excite fluorescence and the resulting fluorescence photon is timed and referenced to the arrival time of the other entangled photon. Thus, we can exploit the short timescale of photon pair correlations to conduct experiments that are typically carried out with pulsed lasers and we show that the inherent timing of the photons is fast enough to resolve the nanosecond scale fluorescence lifetime of the sample.

View Article and Find Full Text PDF
Article Synopsis
  • * In inertially confined fusion, ignition allows the fusion process to spread into surrounding fuel, potentially leading to higher energy output.
  • * Recent experiments at the National Ignition Facility achieved capsule gains of 5.8 and approached ignition, even though "scientific breakeven" has not yet been fully realized.
View Article and Find Full Text PDF

The advanced radiographic capability (ARC) laser system, part of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, is a short-pulse laser capability integrated into the NIF. The ARC is designed to provide adjustable pulse lengths of ∼1-38 in four independent beamlets, each with energies up to 1 kJ (depending on pulse duration). A detailed model of the ARC lasers has been developed that predicts the time- and space-resolved focal spots on target for each shot.

View Article and Find Full Text PDF