Publications by authors named "M C M Balemans"

Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1 receptor (Drd1).

View Article and Find Full Text PDF

Medical students have to process a large amount of information during the first years of their study, which has to be retained over long periods of nonuse. Therefore, it would be beneficial when knowledge is gained in a way that promotes long-term retention. Paper-and-pencil drawings for the uptake of form-function relationships of basic tissues has been a teaching tool for a long time, but now seems to be redundant with virtual microscopy on computer-screens and printers everywhere.

View Article and Find Full Text PDF
Article Synopsis
  • Kleefstra syndrome (KS) is caused by a lack of the EHMT1 enzyme and leads to intellectual disabilities, growth delays, and unique facial features.
  • Researchers studied mice with a similar EHMT1 deficiency to see if they showed signs of KS, and found that these mice had growth delays, weak muscles, and facial features like those seen in KS.
  • The study showed that changes in certain genes related to bone growth were linked to the mice’s unusual facial shapes, suggesting that studying these mice can help us understand KS better.
View Article and Find Full Text PDF

Euchromatin histone methyltransferase 1 (EHMT1) is a highly conserved protein that catalyzes mono- and dimethylation of histone H3 lysine 9, thereby epigenetically regulating transcription. Kleefstra syndrome (KS), is caused by haploinsufficiency of the EHMT1 gene, and is an example of an emerging group of intellectual disability (ID) disorders caused by genes encoding epigenetic regulators of neuronal gene activity. Little is known about the mechanisms underlying this disorder, prompting us to study the Euchromatin histone methyltransferase 1 heterozygous knockout (Ehmt1(+/-)) mice as a model for KS.

View Article and Find Full Text PDF

Introduction: Tenascin-X (TNX) is an extracellular matrix (ECM) glycoprotein, the absence of which in humans leads to a recessive form of Ehlers-Danlos syndrome (EDS), a group of inherited connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. A mouse model of TNX-deficient type EDS has been used to characterize the dermatological, orthopedic, and obstetrical features. The growing insight in the clinical overlap between myopathies and inherited connective tissue disorders asks for a study of the muscular characteristics of inherited connective tissue diseases.

View Article and Find Full Text PDF