Background: Fish gut microbial colonisation starts during larval stage and plays an important role in host's growth and health. To what extent first colonisation could influence the gut microbiome succession and growth in later life remains unknown. In this study, Nile tilapia embryos were incubated in two different environments, a flow-through system (FTS) and a biofloc system (BFS); hatched larvae were subsequently cultured in the systems for 14 days of feeding (dof).
View Article and Find Full Text PDFBiofloc technology is commonly applied in intensive tilapia (Oreochromis niloticus) culture to maintain water quality, supply the fish with extra protein, and improve fish growth. However, the effect of dietary supplementation of processed biofloc on the gut prokaryotic (bacteria and archaea) community composition of tilapia is not well understood. In this study one recirculating aquaculture system was used to test how biofloc, including in-situ biofloc, dietary supplementation of ex-situ live or dead biofloc, influence fish gut prokaryotic community composition and growth performance in comparison to a biofloc-free control treatment.
View Article and Find Full Text PDFSustainable aquafeed production requires fishmeal replacement, leading to an increasing use of plant-derived ingredients. As a consequence, higher levels of antinutritional substances, such as non-starch polysaccharides and phytate, are present in aquafeeds, with negative effects on fish performance, nutrient digestibility and overall gut health. To alleviate these negative effects, providing exogenous digestive enzymes and/or probiotics can be an effective solution.
View Article and Find Full Text PDFThis review investigates the performance and the feasibility of the integration of an algal reactor in recirculating aquaculture systems (RAS). The number of studies related to this topic is limited, despite the apparent benefit of algae that can assimilate part of the inorganic waste in RAS. We identified two major challenges related to algal integration in RAS: first, the practical feasibility for improving nitrogen removal performance by algae in RAS; second, the economic feasibility of integrating an algal reactor in RAS.
View Article and Find Full Text PDFInorganic‑nitrogen removal is essential for the sustainable operation of aquaculture industry and also influences the health of aquatic animals, which may be accomplished by utilizing biofloc technology. In this paper, we studied the use of three different carbon sources 1) longan seed powder (LP), 2) Poly(β-hydroxybutyrate-β-hydroxyvalerate) (PHBV) and 3) synthesized PHBV and LP (PHBVL) in biofloc systems for 90days to investigate the nitrogen dynamics and gut microbiota of Nile tilapia (Oreochromis niloticus). The PHBVL and PHBV groups had higher total inorganic‑nitrogen removal efficiencies (70.
View Article and Find Full Text PDF