A significantly diverse clinical presentation of amyotrophic lateral sclerosis (ALS), even in its best-studied familial form, continues to hinder current efforts to develop effective disease-modifying drugs for the cure of this rapidly progressive, fatal neuromuscular disease. We have previously shown that clinical heterogeneity of sporadic ALS (sALS) could be explained, at least in part, by its polygenic nature as well as by the presence of mutated genes linked to non-ALS neurological diseases and genes known to mediate ALS-related pathologies. We hypothesized that a similar genetic framework could also be present in patients with familial ALS (fALS).
View Article and Find Full Text PDFWe present the complete chloroplast genome of the eelgrass from Monterey, California. The genome is circular and 144,675 bp in length. It consists of 82 protein-coding, 31 transfer RNA, and 8 ribosomal RNA genes and is 99.
View Article and Find Full Text PDFBackground: The pandemic emergent disease multisystem inflammatory syndrome in children (MIS-C) following coronavirus disease-19 infection can mimic endemic typhus. We aimed to use artificial intelligence (AI) to develop a clinical decision support system that accurately distinguishes MIS-C versus Endemic Typhus (MET).
Methods: Demographic, clinical, and laboratory features rapidly available following presentation were extracted for 133 patients with MIS-C and 87 patients hospitalized due to typhus.
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various neurological deficits including developmental delays, intellectual disability, epilepsy, and language and motor issues. The presentation of PMG varies and is often found in conjunction with other congenital anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its classification as a defect of neuronal migration and organization.
View Article and Find Full Text PDFPurpose: This study investigated the ecological validity of conventional voice assessments by comparing the self-perceived voice quality and acoustic characteristics of voice production during these assessments to those in a simulated environment with varying distracting conditions and noise levels.
Method: Forty-two university professors (26 women) participated in the study, where they were asked to produce loud connected speech by reading a 100-word text under four different conditions: a conventional assessment and three virtual classroom simulations created with 360° videos, each with different noise levels, played through a virtual reality headset and headphones. The first video depicted students paying attention in class (40 dB classroom noise); the second showed some students talking, generating moderate conversational noise (60 dB); and the third depicted students talking loudly and not paying attention (70 dB).