Purpose: Treatment planning for CyberKnife (CK) (Accuray, USA) can be performed with Precision (Accuray, USA) or RayStation (RS) (RaySearch Laboratories, Sweden) treatment planning systems (TPS). RaySearch recently released a new version of the CK module in RS 12A. The objective of the study was to compare plan quality between RS 12A and Precision.
View Article and Find Full Text PDFBackground And Purpose: We describe a multicenter cross validation of ultra-high dose rate (UHDR) (>= 40 Gy/s) irradiation in order to bring a dosimetric consensus in absorbed dose to water. UHDR refers to dose rates over 100-1000 times those of conventional clinical beams. UHDR irradiations have been a topic of intense investigation as they have been reported to induce the FLASH effect in which normal tissues exhibit reduced toxicity relative to conventional dose rates.
View Article and Find Full Text PDFBackground: RaySearch (AB, Stockholm) has released a module for CyberKnife (CK) planning within its RayStation (RS) treatment planning system (TPS).
Purpose: To create and validate beam models of fixed, Iris, and multileaf collimators (MLC) of the CK M6 for Monte Carlo (MC) and collapsed cone (CC) algorithms in the RS TPS.
Methods: Measurements needed for the creation of the beam models were performed in a water tank with a stereotactic PTW 60018 diode.
A patient with a cutaneous lymphoma was treated on the same day for 2 distinct tumors using a 15 Gy single electron dose given in a dose rate of 0.08 Gy/second versus 166 Gy/second. Comparing the two treatments, there was no difference for acute reactions, late effects at 2 years and tumor control.
View Article and Find Full Text PDFPurpose: To commission and evaluate the Monte Carlo (MC) dose calculation algorithm for the CyberKnife equipped with a multileaf collimator (MLC).
Methods: We created a MC model for the MLC using an integrated module of the CyberKnife treatment planning software (TPS). Two parameters could be optimized: the maximum energy and the source full width at half-maximum (FWHM).