Eur J Clin Microbiol Infect Dis
February 2025
Unlabelled: Many methods are being tried for rapid and accurate identification of sepsis-causing microorganisms. We analyzed the performance of three different preparation methods [MBT Sepsityper IVD Kit (Bruker Daltonics GmbH, Germany), sodium dodecyl sulfate (SDS) lysis, and differential centrifugation with protein extraction (Centrifugation +PE)] and compared in standard and Sepsityper modules of the Bruker Biotyper MALDI-TOF MS for direct identification of bacteria from 240 positive blood culture bottles of BACTEC FX (Becton Dickinson, USA). By using the standard module, correct identification at species level (score ≥2) was done in 46.
View Article and Find Full Text PDFPurpose: Due to the potential for Aspergillus species to cause lethal infections and the rising rates of antifungal resistance, the significance of antifungal susceptibility tests has increased. We aimed to assess the sensitivities of Aspergillus species to amphotericin B (AMB), voriconazole (VOR), itraconazole (ITZ), and caspofungin (CAS) using disk diffusion (DD) and gradient diffusion (GD) methods and compare them with broth microdilution (BMD) as the reference susceptibility method.
Methods: The study involved 62 Aspergillus fumigatus, 28 Aspergillus flavus, and 16 Aspergillus terreus isolates, totaling 106 Aspergillus isolates.
Background: Despite therapeutic drug monitoring and pharmacogenetic-guided dose selection are recommended for pediatric patients, safety of voriconazole is mostly monitored by clinical assessment. Having comprehensive knowledge of safety profile and distinguishing incidental events from the reactions that are truly related to voriconazole use are crucial for safer and uninterrupted treatment.
Objectives: This study aimed to address adverse reactions during the first month of voriconazole use by systematically evaluating retrospective records of all adverse events.