Publications by authors named "M C Crawford"

Background: Access to liver transplantation (LT) is affected by geographic disparities. Higher waitlist mortality is observed in patients residing farther from LT centres, but the impact of distance on post-LT outcomes is unclear.

Aims: To evaluate whether the distance LT recipients reside from their LT centre affects graft and patient outcomes.

View Article and Find Full Text PDF

Background: Community access to evidence-based information is critical, especially during a pandemic, as it can impact knowledge and adoption of health behaviors that affect health disparities. The field of dissemination and implementation (D&I) science is ideally positioned to address this need through its focus on reducing the research-to-practice gap through improved distribution of information. The purpose of this paper is to describe the creation of a weekly webinar series about COVID-19 directed toward community members, and the extent to which webinars were found useful and increased awareness of evidence-based information and services.

View Article and Find Full Text PDF

Background: HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors.

Methods: A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells.

View Article and Find Full Text PDF

Powassan virus (POWV) is a pathogenic tick-borne flavivirus that causes fatal neuroinvasive disease in humans. There are currently no approved therapies or vaccines for POWV infection. Here, we develop a POW virus-like-particle (POW-VLP) based vaccine adjuvanted with the novel synthetic Toll-like receptor 7/8 agonist INI-4001.

View Article and Find Full Text PDF

During meiosis, programmed DNA double-strand breaks (DSBs) are formed by the topoisomerase-like enzyme, Spo11, activating the DNA damage response (DDR) kinase Mec1ATR via the checkpoint clamp loader, Rad24RAD17. At single loci, loss of Mec1 and Rad24 activity alters DSB formation and recombination outcome, but their genome-wide roles have not been examined in detail. Here, we utilise two strategies-deletion of the mismatch repair protein, Msh2, and control of meiotic prophase length via regulation of the Ndt80 transcription factor-to help characterise the roles Mec1 and Rad24 play in meiotic recombination by enabling genome-wide mapping of meiotic progeny.

View Article and Find Full Text PDF