Br J Haematol
January 2025
VEXAS syndrome is a haemato-inflammatory disease caused by somatic UBA1 mutations and characterized by cytoplasmic vacuoles in myeloid and erythroid precursor cells. Although there is currently no standard treatment algorithm for VEXAS, patients are generally treated with anti-inflammatory therapies focused on symptom management, with only partial effectiveness. Hypomethylating agents (HMA) have shown promise in VEXAS patients with concomitant myelodysplastic syndrome (MDS), while the efficacy of HMA in VEXAS patients without MDS is largely unknown.
View Article and Find Full Text PDFIntroduction: Junctional epidermolysis bullosa (JEB) is a rare genetic disease manifesting with skin and mucosal blistering. As part of the JEB, patients present with syndromic amelogenesis imperfecta (AI). Reports have described external crown resorption (ECR) in the teeth of patients with JEB, but its prevalence is unknown.
View Article and Find Full Text PDFObjectives: To explore whether the mean lumbar acceleration is a feasible tool for determining minimum eligibility criteria to compete in cerebral palsy football, differentiating between new sports classes, and to assess the effect of foot contacts on balance evaluation and class distinction.
Design: Cross-sectional study.
Methods: A total of 146 male cerebral palsy footballers classified into FT1 (n=34), FT2 (n=87), and FT3 (n=25), alongside 12 non-impaired athletes as a control group, participated.
Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.
View Article and Find Full Text PDFExtracellular vesicles (EVs) play a crucial role in mediating communication between cells across species and kingdoms. The intercellular communication facilitated by EVs through autocrine and paracrine signalling mechanisms is essential for cell survival, maintaining normal metabolic functions and ensuring overall bodily homeostasis and health. Extracellular vesicles are present in various bodily fluids, such as pleural effusions, plasma, breast milk, amniotic fluid, semen and saliva.
View Article and Find Full Text PDF