Plant sterols are known for their hypocholesterolemic action, and the molecular mechanisms behind this within the gut have been extensively discussed and demonstrated to the point that there is a degree of consensus. However, recent studies show that these molecules exert an additional umbrella of therapeutic effects in other tissues, which are related to immune function, lipid metabolism, and glucose metabolism. A strong hypothesis to explain these effects is the structural relationship between plant sterols and the ligands of a group of nuclear receptors.
View Article and Find Full Text PDFPurpose: To evaluate the feasibility of reversing a primary failure through therapeutic mechanical stimulation induced by transcutaneous application of acoustic waves (extracorporeal shockwave therapy [ESWT]) in the peri-implant tissues.
Materials And Methods: This clinical report evaluates the outcome of a new protocol proposed to treat a primary failure (loosened oral implant): application of three cycles of ESWT (one session per week for 3 consecutive weeks) with an equivalent positive energy of 0.18 mJ/mm2 (therapeutic dose: 2,000 pulses, 8 Hz, 4.
Background: No pharmacological treatment is yet approved for non-alcoholic fatty liver disease (NAFLD). Plant sterols have shown healthy properties beyond lowering LDL-cholesterol, including lowering triglycerides and lipoprotein plasma levels. Despite pre-clinical data suggesting their involvement in liver fat control, no clinical study has yet been successful.
View Article and Find Full Text PDFDysferlinopathies are muscle dystrophies caused by mutations in the gene encoding dysferlin, a relevant protein for membrane repair and trafficking. These diseases are untreatable, possibly due to the poor knowledge of relevant molecular targets. Previously, we have shown that human myofibers from patient biopsies as well as myotubes derived from immortalized human myoblasts carrying a mutated form of dysferlin express connexin proteins, but their relevance in myoblasts fate and function remained unknown.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
October 2019
Endotoxemia caused by bacterial lipopolysaccharides (LPSs) leads to severe skeletal muscular deterioration, starting with higher membrane permeability and decline in resting membrane potential (RMP). However, the molecular mechanism of such changes remains unclear. Here, we evaluated the possible involvement of connexin43- and connexin45-based hemichannels (Cx43 and Cx45 HCs, respectively) as putative mediators of sarcolemmal dysfunctions induced by LPS in control (Cx43Cx45) and Cx43/Cx45 expression-deficient (Cx43Cx45:Myo-Cre) skeletal mice myofibers.
View Article and Find Full Text PDF