Publications by authors named "M C Blary"

Hydroxyapatite (HA) porous ceramics are increasingly used in biomedical applications. Their physical characteristics, such as porous volume, require perfect control of the pore shape, as well as the number and the size of their interconnections. The aim of our study was to evaluate a new HA ceramic using polymethylmethacrylate microbeads (PMMA) as the porous agent.

View Article and Find Full Text PDF

We performed experimental studies to confirm the hypothesis that cellular damages occurring around implanted biphasic bioceramics could be related to a micro-particles release because of an insufficient sintering. First, an in vitro cytotoxicity study was performed on four biphasic ceramic (BCP) samples. Without treatment of the extraction medium, a cytotoxicity was observed, although after centrifugation this cytotoxicity disappeared in all samples.

View Article and Find Full Text PDF

Heterotopic ossification (HO), a possible complication of head injury, develops in sites where it is not normally present like at the vicinity of joints. It may cause pain, decrease motion and in severe cases complete joint ankylosis requiring surgical intervention. To our knowledge, no study has been made to analyze HO at the molecular level on human biopsies, whereas its etiology remains to be determined.

View Article and Find Full Text PDF

The preparation of hybrid material with osteoinductive capacity may be achieved by association of cultured autologous bone cells with a porous ceramic vehicle. We optimized culture conditions for rabbit marrow stromal stem cells (MSCs), notably by selection from batches of fetal calf serum. Rabbit MSCs formed colony-forming unit-ribroblastic (CFU-Fs) in vitro.

View Article and Find Full Text PDF

Injectable calcium phosphate hydraulic cements (CPHC) are a new family of bone substitutes within the class of bone reconstruction biomaterials. In this work, CPHC were tested in two consistencies (preset blocks or liquid paste) in an experimental model of cancellous bone defect in sheep. The defects were eight times larger than those investigated previously in rabbits.

View Article and Find Full Text PDF