Publications by authors named "M C Bittencourt-Oliveira"

Irrigation of crops with cyanotoxin-contaminated water poses a significant risk to human health. The direct phytotoxic effects of microcystin-LR (MC-LR), one of the most toxic and prevalent microcystin variants in water bodies, can induce physiological stress and hinder crop development and production. This study investigated the impact of environmentally relevant concentrations of MC-LR (1 to 10 µg L) on photosynthetic parameters and antioxidant response of lettuce (Lactuca sativa L.

View Article and Find Full Text PDF

is one of the most predominant freshwater bloom-forming cyanobacterium found globally which is capable of producing toxic secondary metabolites including microcystins that might intoxicate animals and humans when contaminated water or food is ingested. Aubl is one of the plants that might possess bioactive compounds capable of controlling growth and reproduction of . The present study aimed to determine the presence of bioactive compounds in extracts and determine alterations occurred in growth and reproduction of when exposed to these plant extracts.

View Article and Find Full Text PDF

Sphaerospermopsis aphanizomenoides is a filamentous nitrogen-fixing and bloom-forming cyanobacterium, which biomass can fertilize natural water with nutrients, especially through nitrogen fixation. The Sphaerospermopsis aphanizomenoides strain BCCUSP55 was previously isolated from a water supply reservoir in the Brazilian semiarid region, and its draft genome assembly coupled with the gene contents are reported here. The obtained BCCUSP55 draft genome comprised 254 scaffolds with a genome size estimated of 6,096,273 bp.

View Article and Find Full Text PDF

Due to the public and environmental health impact of cyanotoxins, investigations have been focused on finding environmental friendly algaecides from aquatic plants. The present study had the objective to evaluate the population control and physiological response of Microcystis aeruginosa (Kützing) Kützing (strain BCCUSP232) exposed to Pistia stratiotes L. extracts.

View Article and Find Full Text PDF

Anthropogenic activities have led to the depletion of the ultraviolet radiation screening ozone layer, exposing aquatic biota to its harmful effects. Also, the rising applications of nanotechnology are resulting in the release and contamination of aquatic ecosystems with engineered nanometals like titanium dioxide nanoparticles (nTiO). The rise in ultraviolet radiation interacts with nanometals, increasing their bioactivities to susceptible aquatic organisms such as algae and cyanobacteria.

View Article and Find Full Text PDF