Magnetic resonance imaging (MRI) techniques have recently been developed for obtaining high T contrast images using inversion recovery (IR) images at two inversion times (TIs) rather than a single TI. They use simple mathematical operations - multiplication, addition, subtraction, division - to create images not attainable by conventional IR. The present study describes a novel two-point IR technique formed by the subtraction of log images.
View Article and Find Full Text PDFThe divided subtracted inversion recovery (dSIR) is a high T contrast technique that shows changes in white matter in patients with traumatic brain injury and hypoxic injury. The changes can be explained by small differences in T; however, to date, there has been no independent validation of the technique using a standard reference. The present study develops the theory of the dSIR signal and performs validation using the NIST/ISMRM T phantom.
View Article and Find Full Text PDFPurpose: Balanced steady-state free precession (bSSFP) imaging is susceptible to outflow effects where excited spins leaving the slice as part of the blood stream are misprojected back onto the imaging plane. Previous work proposed using slice-encoding steps to localize these outflow effects from corrupting the target slice, at the expense of prolonged scan time. This present study extends this idea by proposing a means of significantly reducing most of the outflowing signal from the imaged slice using a coil localization method that acquires a slice-encoded calibration scan in addition to the 2D data, without being nearly as time-demanding as our previous method.
View Article and Find Full Text PDFDivided and subtracted MRI is a novel imaging processing technique, where the difference of two images is divided by their sum. When the sequence parameters are chosen properly, this results in images with a high T or T weighting over a small range of tissues with specific T and T values. In the T domain, we describe the implementation of the divided Subtracted Inversion Recovery Sequence (dSIR), which is used to image very small changes in T from normal in white matter.
View Article and Find Full Text PDF