Publications by authors named "M Burtenshaw"

The origin of the Polynesian bottle gourd (Lagenaria siceraria), an important crop species in prehistoric Polynesia, has remained elusive. Most recently, a South American origin has been favored as the bottle gourd could have been introduced from this continent with the sweet potato by Polynesian voyagers around A.D.

View Article and Find Full Text PDF

Large deletions and other gross forms of chromosome imbalance are known in man but have rarely been found in the mouse. By screening progeny of spermatogonially irradiated male mice for a combination of runting and other phenotypic effects, we have identified animals that have large deletions comprising from 2.5-30 percent of the length of individual chromosomes, or other major chromosome changes, which are compatible with viability and fertility.

View Article and Find Full Text PDF

A complex murine chromosomal rearrangement, T(In1;5)44H, was recovered after 5 Gy + 5 Gy (given 24 h apart) spermatogonial X-irradiation. T44H is a paracentric inversion of most of Chromosome (Chr) 1 (1A1-1H6), followed by splitting of the inverted segment through a reciprocal translocation with Chr 5, the latter breakpoints being in 1C2 and 5F. Linkage tests have shown that the probable order on Chr 1 is fz-ln-T44H with 2.

View Article and Find Full Text PDF

The best examples of imprinting in humans are provided by the Angelman and Prader-Willi syndromes (AS and PWS) which are associated with maternal and paternal 15q11-13 deletions, respectively, and also with paternal and maternal disomy 15. The region of the deletions has homology with a central part of mouse chromosome 7, incompletely tested for imprinting effects. Here, we report that maternal duplication for this region causes a murine imprinting effect which may correspond to PWS.

View Article and Find Full Text PDF

The adenosine deaminase locus (Ada) in the mouse has been localized by in situ hybridization to band 2H3. Linkage analysis of backcross data has shown that Ada is 13.8 +/- 2.

View Article and Find Full Text PDF