Publications by authors named "M Burgener"

This topical review summarizes the theoretical and experimental findings obtained over the last 20 years on the subject of growth-induced polarity formation driven by a Markov chain process. When entering the growing surface of a molecular crystal, an inorganic-organic composite or a natural tissue, the building blocks may undergo 180° orientational disorder. Driven by configurational entropy, faulted orientations can promote the conversion of a growing non-polar seed into an object showing polar domains.

View Article and Find Full Text PDF

180° orientational disorder of molecular building blocks can lead to a peculiar spatial distribution of polar properties in molecular crystals. Here we present two examples [4-bromo-4'-nitrobiphenyl (BNBP) and 4-bromo-4'-cyanobiphenyl (BCNBP)] which develop into a bipolar final growth state. This means orientational disorder taking place at the crystal/nutrient interface produces domains of opposite average polarity for as-grown crystals.

View Article and Find Full Text PDF

The correspondence of the state of alignment of macromolecules in biomimetic materials and natural tissues is demonstrated by investigating a mechanism of electrical polarity formation: An in vitro grown biomimetic FAp/gelatin composite is investigated for its polar properties by second harmonic (SHGM) and scanning pyroelectric microscopy (SPEM). Hexagonal prismatic seed crystals formed in gelatin gels represent a monodomain polar state, due to aligned mineralized gelatin molecules. Later growth stages, showing dumbbell morphologies, develop into a bipolar state because of surface recognition by gelatin functionality: A reversal of the polar alignment of macromolecules, thus, takes place close to that basal plane of the seed.

View Article and Find Full Text PDF

Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Various surface species originating from the reaction between CO2 and H2 over Al2O3-supported Pt, Pd, Rh, and Ru model catalysts were investigated by attenuated total reflection infrared (ATR-IR) spectroscopy under high-pressure conditions. Two different spectroscopic cells were used: a variable-volume view cell equipped with ATR-crystal and transmission IR windows (batch reactor) and a continuous-flow cell also equipped with a reflection element for ATR-IR spectroscopy. The study corroborated that CO formation from dense CO2 in the presence of hydrogen occurs over all Pt-group metals commonly used in heterogeneous catalytic hydrogenations in supercritical CO2 (scCO2).

View Article and Find Full Text PDF