Publications by authors named "M Bun-ya"

Numerous invertebrate species belonging to several phyla cannot synthesize sterols de novo and rely on a dietary source of the compound. SCPx (sterol carrier protein 2/3-oxoacyl-CoA thiolase) is a protein involved in the trafficking of sterols and oxidation of branched-chain fatty acids. We have isolated SCPx protein from Spodoptera littoralis (cotton leafworm) and have subjected it to limited amino acid sequencing.

View Article and Find Full Text PDF

We analyzed the distribution and morphological characteristics of peroxisomes in the nematode Caenorhabditis elegans by routine electron microscopy, immunoelectron microscopy, and morphometry. Peroxisomes were mainly contained in the epithelial cells of the digestive tract and pharyngeal gland, but some were observed in other cells. Their shape varied from round to twisted.

View Article and Find Full Text PDF

The authors cloned the cDNA of the nematode Caenorhabditis elegans encoding a 44-kDa protein (P-44), which is similar to sterol carrier protein x (SCPx). Genomic DNA data and Northern blot analysis excluded the possibility of P-44 forming SCPx-like fusion protein. P-44 is required in the formation of bile acid in vitro from CoA esters of their enoyl-form intermediate in the presence of D-3-hydroxyacyl-CoA dehydratase/D-3-dehydrogenase bifunctional protein.

View Article and Find Full Text PDF

Sterol carrier protein 2 (SCP2) is a 13-kDa peroxisomal protein, identical to nonspecific lipid-transfer protein, and stimulates various steps of cholesterol metabolism in vitro. Although the name is reminiscent of acyl carrier protein, which is involved in fatty acid synthesis, SCP2 does not bind to lipids specifically or stoichiometrically. This protein is expressed either as a small precursor or as a large fusion (termed SCPx) that carries at its C-terminal the complete sequence of SCP2.

View Article and Find Full Text PDF

We purified catalase-2 of the nematode Caenorhabditis elegans and identified peroxisomes in this organism. The peroxisomes of C. elegans were not detectable by cytochemical staining using 3, 3'-diaminobenzidine, a commonly used method depending on the peroxidase activity of peroxisomal catalase at pH 9 in which genuine peroxidases are inactive.

View Article and Find Full Text PDF