Publications by authors named "M Buleon"

Background And Hypothesis: Congenital anomalies of the kidney and the urinary tract (CAKUT), often discovered in utero, cover a wide spectrum of outcomes ranging from normal postnatal kidney function to fetal death. The current ultrasound workup does not allow for an accurate assessment of the outcome. The present study aimed to significantly improve the ultrasound-based prediction of postnatal kidney survival in CAKUT.

View Article and Find Full Text PDF

The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models.

View Article and Find Full Text PDF

Background: Chemokines orchestrate immune cells activation and infiltration during acute kidney injury (AKI).

Objectives: We aim to test whether deletion of C-C chemokine ligand 7 (CCL7), a small chemokine related to CCL2 (MCP-1), may modulate AKI development and progression toward kidney fibrosis.

Method: Expression of CCL7 was quantified in murine cortical tubular (MCT) cells exposed to myoglobin or lipopolysaccharide or submitted to metabolic reprogramming.

View Article and Find Full Text PDF

Background: The role of macrophages in the development of rhabdomyolysis-induced acute kidney injury (RM-AKI) has been established, but an in-depth understanding of the changes in the immune landscape could help to improve targeted strategies. Whereas senescence is usually associated with chronic kidney processes, we also wished to explore whether senescence could also occur in AKI and whether senolytics could act on immune cells.

Methods: Single-cell RNA sequencing was used in the murine glycerol-induced RM-AKI model to dissect the transcriptomic characteristics of CD45+ live cells sorted from kidneys 2 days after injury.

View Article and Find Full Text PDF

Vascular calcification is an important risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). It is also a complex process involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. In an observational, multicenter European study, including 112 patients with CKD from Spain and 171 patients on dialysis from France, we used serum proteome analysis and further validation by ELISA to identify calprotectin, a circulating damage-associated molecular pattern protein, as being independently associated with CV outcome and mortality.

View Article and Find Full Text PDF