Biochim Biophys Acta
August 2015
We performed an extensive computational study to obtain insight in the molecular mechanisms that take place prior to membrane fusion. We focused on membrane-anchored hybrid macromolecules (lipid–polymer–oligopeptide) that mimic biological SNARE proteins in terms of liposome fusion characteristics [H. Robson Marsden et al.
View Article and Find Full Text PDFBiochim Biophys Acta
March 2015
We performed an extensive computational study to obtain insight in the molecular mechanisms that take place prior to membrane fusion. We focused on membrane-anchored hybrid macromolecules (lipid-polymer-oligopeptide) that mimic biological SNARE proteins in terms of liposome fusion characteristics [H. Robson Marsden et al.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2013
Potentials routinely used in atomistic molecular dynamics simulations are not always suitable for modeling systems at coarse-grained resolution. For example, in the calculation of traditional torsion angle potentials, numerical instability is often encountered in the case of very flexible molecules. To improve the stability and accuracy of coarse-grained molecular dynamics simulations, we propose two approaches.
View Article and Find Full Text PDFThe robustness of microorganisms used in industrial fermentations is essential for the efficiency and yield of the production process. A viable tool to increase the robustness is through engineering of the cell membrane and especially by incorporating lipids from species that survive under harsh conditions. Bolalipids are tetraether lipids found in Archaea bacteria, conferring stability to these bacteria by spanning across the cytoplasmic membrane.
View Article and Find Full Text PDFSmall-angle neutron scattering and coarse-grained molecular dynamics simulations have been used to determine the structural parameters (bilayer thickness D, polar region thickness D(H), interfacial lateral area of the unit cell A(UC) and alcohol partial interfacial area A(CnOH)) of fluid dioleoylphosphatidylcholine:dioleoylphosphatidylserine (PCPS, DOPC:DOPS=24.7mol:mol) bilayers in extruded unilamellar vesicles with incorporated aliphatic alcohols (CnOH, n=8-18 is the even number of carbons in alkyl chain). External ((2))H(2)O/H(2)O contrast variation experiments revealed that D(H) decreases as a function of alkyl chain length and CnOH:PCPS molar ratio.
View Article and Find Full Text PDF