Background: For years it has been stated that the need for prevention and rehabilitation is not always identified early enough. Although many individuals have regular contact with a general practitioner (GP), this access path for applying for a prevention or rehabilitation service has not been fully exploited. The important role of GPs in supporting the intention to apply is highlighted in the research.
View Article and Find Full Text PDFIn this Review, we present a comparative study between electron and positron scattering cross sections from CO molecules over a broad impact energy range (0.1-5000 eV). For electron scattering, new total electron scattering cross sections (e-TCS) have been measured with a high resolution magnetically confined electron beam transmission system from 1 to 200 eV.
View Article and Find Full Text PDFThe extraction of electron-liquid phase cross-sections (surface and bulk) is proposed through the measurement of (differential) energy loss spectra for electrons scattered from a liquid micro-jet. The signature physical elements of the scattering processes on the energy loss spectra are highlighted using a Monte Carlo simulation technique, originally developed for simulating electron transport in liquids. Machine learning techniques are applied to the simulated electron energy loss spectra, to invert the data and extract the cross-sections.
View Article and Find Full Text PDFWe review experimental and theoretical cross sections for electron scattering in nitric oxide (NO) and form a comprehensive set of plausible cross sections. To assess the accuracy and self-consistency of our set, we also review electron swarm transport coefficients in pure NO and admixtures of NO in Ar, for which we perform a multi-term Boltzmann equation analysis. We address observed discrepancies with these experimental measurements by training an artificial neural network to solve the inverse problem of unfolding the underlying electron-NO cross sections while using our initial cross section set as a base for this refinement.
View Article and Find Full Text PDFWe review experimental and theoretical cross sections for electron transport in α-tetrahydrofurfuryl alcohol (THFA) and, in doing so, propose a plausible complete set. To assess the accuracy and self-consistency of our proposed set, we use the pulsed-Townsend technique to measure drift velocities, longitudinal diffusion coefficients, and effective Townsend first ionization coefficients for electron swarms in admixtures of THFA in argon, across a range of density-reduced electric fields from 1 to 450 Td. These measurements are then compared to simulated values derived from our proposed set using a multi-term solution of Boltzmann's equation.
View Article and Find Full Text PDF