We demonstrate the proof of concept of increasing the bioavailability of carbon substrates, derived from plastic waste, for their conversion to the biodegradable polymer polyhydroxyalkanoate [PHA] by bacteria and test various approaches to PHA accumulation through batch, fed batch and continuous culture. Styrene, ethylbenzene, and toluene are produced from the pyrolysis of mixed plastic waste (Kaminsky, 2021; Miandad et al., 2017), but they are volatile and poorly soluble in water making them difficult to work with in aqueous fermentation systems.
View Article and Find Full Text PDFBackground: In ovo MR presents a promising and viable alternative to traditional in vivo small animal experiments. Sodium MRI complements proton MRI by providing potential access to tissue cellular metabolism. Despite its abundance, sodium MRI is challenged by lower MR sensitivity and faster relaxation times compared to proton MRI.
View Article and Find Full Text PDFThis study presents a novel MRI coil design approach explicitly tailored for chick embryo measurements, with the primary objective of improving sensitivity and coverage. The limitations posed by conventional birdcage coils were addressed by introducing a curvature feature into a standard coil. The performance of the modified coil was assessed using EM simulations and experimental evaluations, which were subsequently validated using a 7 T MRI scanner.
View Article and Find Full Text PDFThe chemolithotroph Cupriavidus necator H16 is known as a natural producer of the bioplastic-polymer PHB, as well as for its metabolic versatility to utilize different substrates, including formate as the sole carbon and energy source. Depending on the entry point of the substrate, this versatility requires adjustment of the thermodynamic landscape to maintain sufficiently high driving forces for biological processes. Here we employed a model of the core metabolism of C.
View Article and Find Full Text PDF