Sodium salts of medium-chain fatty acids, sodium caprate (C10) in particular, have been used as absorption-enhancing agents to promote transmucosal drug absorption. In this study, we conducted both in vitro and in vivo experiments to investigate the effects of C10 on intestinal permeabilities and mucosal morphology. Mucosal addition of C10 (13-25 mM) reduced the transepithelial electric resistance (TEER) of cultured monolayers of the human intestinal cell line Caco-2 by 40-65% and, upon removal of C10, a marked tendency of TEER recovery was recorded.
View Article and Find Full Text PDFDS-1, a modified Quillaja saponin, has recently been shown to promote the absorption of insulin and aminoglycoside antibiotics via the ocular and nasal route. The purpose of this study is to investigate the effect of DS-1 on intestinal permeability, the mechanism of its action, and reversibility of the effect. The permeation-enhancing activity of DS-1 was evaluated in cultured monolayers of the Caco-2 intestinal epithelial cells by examining its effect on the transepithelial electric resistance (TEER) and on transport of mannitol and a model D-decapeptide.
View Article and Find Full Text PDFLong-chain acylcarnitines, such as palmitoylcarnitine chloride (PCC), are endogenous compounds which have been shown to increase intestinal transport of small hydrophilic compounds (including some pharmaceutical agents) through the paracellular pathway. However, the size range of the compounds whose absorption can be improved by PCC has not been fully investigated. In the present study, we systematically examined the effect of PCC on the transport rate of a series of hydrophilic fluorescent model compounds of varying molecular weights (0.
View Article and Find Full Text PDF