Radiat Prot Dosimetry
November 2020
The present work aims to assess the effective doses from long-term continual radon monitoring in six European caves (Slovenia, Slovakia and the Czech Republic), including influencing environmental factors. Caves are important radiation protection subjects because of elevated radon activity concentration (~kBq/m3), mostly due to the low natural ventilation. The sources of radon gas are most often underground rock layers and clastic sediments.
View Article and Find Full Text PDFThe present work concerns a detailed analysis of Radon time series to differentiate endogenous from exogenous phenomena which provide anomalous signals. Two-year data from two sites in Czech Republic and in Italy are analyzed in order to contribute to the prevention of natural hazards. A new hybrid forecasting method is implemented and tuned for the identification of Radon anomalies in the time series.
View Article and Find Full Text PDFAnomalies in the radon (222Rn) releases in underground environments are one of the phenomena that can be observed before earthquake occurrence. Continuous measurements of radon activity concentration, and of meteorological parameters that influence the gas emission, were performed in three Slovak and Czech caves during 1-y period (1 July 2016-30 June 2017). The radon activity concentration in caves shows seasonal variations, with maxima reached during summer months.
View Article and Find Full Text PDFCave radon concentration measurements reflect the outcome of a perpetual competition which pitches flux against ventilation and radioactive decay. The mass balance equations used to model changes in radon concentration through time routinely treat flux as a constant. This mathematical simplification is acceptable as a first order approximation despite the fact that it sidesteps an intrinsic geological problem: the majority of radon entering a cavity is exhaled as a result of advection along crustal discontinuities whose motions are inhomogeneous in both time and space.
View Article and Find Full Text PDFTectonic instability may be measured directly using extensometers installed across active faults or it may be indicated by anomalous natural gas concentrations in the vicinity of active faults. This paper presents the results of fault displacement monitoring at two sites in the Bohemian Massif and Western Carpathians. These data have been supplemented by radon monitoring in the Mladeč Caves and by carbon dioxide monitoring in the Zbrašov Aragonite Caves.
View Article and Find Full Text PDF